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Abstract. This paper details the 2013 design of UBC’s 2D Simulation League
team, to be entered at RoboCup 2013 in Eindhoven, The Netherlands. The main
focus of this year for the team is to restart UBC’s efforts in the Robocup 2D
Simulation League.

1 Introduction

UBC Thunderbots Simulation is a team of Computer Science graduate and undergrad-
uate students at the University of British Columbia. Established in late 2012, it is pur-
suing its first competitive initiative within the 2D Simulation League at RoboCup 2013.

The team has its roots in UBC Thunderbots, which was formed in 2006 and have
been competing in the Robocup Small Size League (SSL) since 2009. UBC Thunder-
bots decided to venture into the 2D simulation league after some research were made on
the Keepaway Problem [3] to improve the team’s performance. As such, Thunderbots
Simulation uses approaches and techniques found in SSL and the Keepaway problem
to improve over the code base being used. Research in competitive robotic soccer in
UBC can be further traced back to Prof. Alan Mackworth, who still provides general
supervision to the team.

The remainder of this paper is organised as follows. Section 2 describes the Skills,
Tactics, and Plays (STP) architecture approach developed by CMDragons [2]. Section
3 presents the Tile Coding techniques used by our Reinforcement Learning Algorithms.
Section 4 briefly describes the Reinforcement Learning Algorithm being used with
some empirical results. Finally, the paper is concluded in Section 5.

The team’s source code is based on Agent2D base, version 3.1.1, developed by H.
Akiyama [4] of Team Helios.

2 Skills, Tactics, and Plays

The main high-level decision making model used is the STP model, developed by CM-
Dragons in 2003 [2] for the Robocup Small Size League competitions.



The STP model is used to manage multiple robots in a challenging adversarial envi-
ronment. In this environment, the decision making model handle short dynamic events,
while simultaneously trying to achieve long-term objectives. STP is composed of Skills,
for executions of low-level actions, such as a simple move or kick; Tactics, that deter-
mine the skills for use by the robots; and Plays, which assign roles for the robots to exe-
cute tactics [1]. The hierarchical architecture within the STP model allows for dynamic
quick response and coordinated control. The team will be able to achieve long-term
goals in a highly coordinated manner, and, similarly, reacts to dynamic events initiated
by the enemy.

Fig. 1: STP Model. Note: SSL had 5 players for each team, but STP is easily extendable to have
any number of players.

Going back to the Agent2D code base, the three layers of STP, Skills, Tactics, and
Plays, can roughly be translated respectively into Behaviors, Roles, and Formation lay-
ers of abstraction. Currently the main focus of improvement over Agent2D is in the
individual Roles to enable then to better select Behaviors to perform through the use of
Reinforcement Learning.

In the future, the team also wishes to improve the current base Agent2D strategy
with the mentioned Play or Formation selection model in the diagram above.

3 Tile Coding

Before jumping into the details of how Reinforcement Learning is being used, one
should look at the technique being used to achieve efficient Reinforcement Learning.



The success of Reinforcement Learning on real-world problems with large, often con-
tinuous state and action spaces, especially a problem like soccer where multiple agents
need to be play both cooperatively and competitively, is highly dependent on effective
and efficient function approximation.

In practical applications of Reinforcement Learning, States and Actions are defined
by continuous variables such as distances and angles. As a result, the Q-table for tuple
of States and Actions are typically large or infinite, thus learning the value function
requires some form of function approximation to reduce the size of the Q-table. [5].

Tile Coding does this function approximation for us by representing the values of
a vector of continuous variables as a large binary vector with few 1s and many 0s. The
binary vector is not represented explicitly, but as a list of the 1s in the vector. The main
step is to partition, or tile, the continuous space multiple times and select one tile from
each tiling corresponding to the vector’s value. Each tile is converted (hashed to) an
element in the large binary vector, and the list of the tile numbers is returned as the
representation of the vector’s value [6].

An immediate advantage of Tile Coding is that the overall number of features that are
present at any time is strictly controlled and independent of the input state. Exactly
one feature is present in each tiling, thus the total number of features present is always
the same as the number of tilings. Tile coding thus strikes a successful balance among
representational power, computational cost, and ease of use [5] [6].

4 Reinforcement Learning with Tile Coding

The Reinforcement Learning algorithm chosen to use Tile Coding for function approx-
imation is SARSA, with or without Eligibility Trace [7]. An eligibility trace is a tempo-
rary record of the occurrence of an event, such as the visiting of a state or the taking of
an action. The trace marks the memory parameters associated with the event as eligible
for undergoing learning changes. If an error occurs, only the eligible states or actions
are assigned credit or blame for the error (receive positive or negative rewards). Thus,
eligibility traces help bridge the gap between events and training information [7].

Each Role uses SARSA to learn to pick the best Behavior (provided by the Agent2D
base) to use given the state. Although each Role can be configured to use different vari-
ables for the state representation necessary to run SARSA, the general state is repre-
sented with the variables as followed:

-Ball kickable of not (1 or 0);
-There is a teammate who can kick the ball (1 or 0).
-Distance of closest teammate to the ball to the ball
-Distance of player to the ball
-Distance to player to the closest teammate to the ball
-Distance of the ball to our goal
-Distance of the player to our goal
-Angle of the player to the ball



-Angle of the closest player to the ball to the ball

The reward function is a simple combination of scoring and distance of the ball to
our goal. The reward is highly weighted towards scoring. If our team scores the agent
is rewarded postively, and if the enemy scores negative reward is received.

Fig. 2: Thunderbots vs Agent2D, (Thunderbots score - Agent2D score) per game.

With its current configuration, on average Thunderbots was able to achieve 0.44
more score per game, giving it an edge over its predecesor Agent2D thanks to the Re-
inforcement Learning it was given.

5 Conclusion

This paper introduced our RoboCup soccer 2D simulation team, UBC Thunderbots
Simulation, and described our current research efforts, including: 1) Introduction of the
STP model from SSL to Simulation League, 2) Tile Coding and its use in 3) Rein-
forcement Learning algorithms such as SARSA with Eligibility trace. The empirical
results also shows that Thunderbots has improved over its Agent2D origin and could be
competitive in the League.
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